

SP2 New Concepts for Efficient Freight systems

Interactive Workshop

A New Competitive, Reliable, Sustainable and Connected Rail Freight Transport Brussels, 26/06/2017

Stefano Ricci Sapienza Università di Roma DICEA stefano.ricci@uniroma1.it

Afternoon's program

14:30 to 15:45	Rail-Road; Rail-Sea, Marshalling Yards: Enhancement of Interfaces
	0. Introduction and scopes
	1. Features and role of typical terminals and yards
	2. Key Performance Indicators (KPI)
	3. Real world case studies
	4. Innovative technologies and operational measures: role
	and applicability fields
	5. Future scenarios: effects of innovations
	6. Economical and financial feasibility
15:45 to 16:30	Questions and answers
16:30 to 16:45	Conclusions

Introduction and scopes: focus

"CAPACITY4RAIL aims at paving the way for the future railway system, delivering coherent, demonstrated, innovative and sustainable solutions"

SUB-PROJECT 2 works towards *"a modern, automated, intelligent and fully-integrated system for efficient, reliable freight Operations"* By means of:

WP2.1 "*Progress beyond State of the Art on Rail Freight Systems*" (Reference standards 2030 and 2050)

WP2.2 "Novel rail freight vehicles"

WP2.3 "Co-modal transshipment and interchange/logistics"

WP2.4 "Catalogue of specifications"

Introduction and scopes: answers

NSWERS

QUESTIONS

Contributions of terminals to future rail freight systems 2030 and 2050

- 1. Features and role = <u>What the terminals should do</u>
- 2. Key Performance Indicators (KPI) = *How the terminals performances* <u>can be measured</u>
- 3. Real world case studies = *How the terminals are working today*
- 4. Innovative technologies and operational measures = <u>What the</u> <u>terminals can take onboard and integrate</u>
- 5. Future scenarios: effects of innovations = <u>How the terminals could</u> <u>work</u>
- 6. Economical and financial feasibility = <u>To what extent the terminals</u> will be economically and financially sustainable

Features and role: standards (1)

C4R

- 6

Features and role: standards (2)

ENTH FRAMEWOR

Equipment	Common standard	Incremental change	System change	
	2010	2030 *	2050 *	
Infrastructure				
Rail Freight Corridors	18.000km	25.000km	50.000km	
Signalling systems	Different	ERTMS L2 in RFC	ERTMS L3 in RFC	
Standard rail weight	UIC 60 kg/m	70 kg/m	70 kg/m	
Speed ordinary freight	100 km/h	100 -120 km/h	120 km/h	
Speed fast freight	100 km/h	120 -160 km/h	120 -160 km/h	
Traffic system				
SWL	Marshalling - feeder	Marshalling – feeder	Automatic marshalling	
		Some liner trains	Liner trains – duo -loco	
Train load		Remote controlled	All remote controlled	
Inter Modal	Endpoint -trains	Endpoint -trains	Endpoint -trains	
		Liner trains with stops	Liner trains fully	
		at siding	automated loading	
High Speed Freight	National post trains	International post and	International post and	
		parcel -trains	parcel -train network	
IT /monitoring systems				
	Some different	Standardized control	Full control of all trains	
		system	and consignments	
*) Adapted to market nee	ds in each product and l	ine 📑		

Features and role: typical terminals

Rail-Road: interchange interchange

DB DUSS Riem – Munich (Germany) IFB Zomerweg – Antwerpen (Belgium) NV Combinant – Antwerpen (Belgium) HUPAC HTA – Antwerpen (Belgium) Typical small scale automatic linear terminal DB DUSS Duisburg (Germany)

Rail-Rail: marshalling yard Hallsberg (Sweden)

Rail-Sea: port rail terminal Valencia Principe Felipe (Spain)

KPI: selection criteria

Capability to display the present performances

- Meeting requests of operators
- Effectiveness to describe terminal operation performances

Sensibility to potential changes introduced by innovations

- Capability to assess effects of new technologies
- Capability to assess effects of innovative operational measures
- Homogenization with forecasting methods and models

Large scale identification

- Rail-Road: 13; Rail-Rail: 15; Rail-Sea: 14

Fine tuning

- Key Performance Indicator
- Most effective from operation performances viewpoint
- Most reliable method (algorithms and/or simulation) for KPI calculation
- Rail-Road: 4/13; Rail-Rail: 4/15; Rail-Sea: 4/14

KPI: selection for inland interchanges

Total Transit Time (ITU) Total Transit Time (vehicle)	$TTR = \sum_{i=1}^{n} TWi + \sum_{i=i}^{n} TOi$	Time period from the arrival of the freight unit (or vehicle) to the terminal gate from road (an external transport infrastructure) to the exit of the unit (or vehicle) from the terminal towards road or railway network. • TTR _v =vehicle total transit time (Truck and train); • TTR _{ITU =} Unit total transit time; • TW = waiting time; • TO = operational time.	Analytical Method
Equipment Performance	$Ep = rac{n_{ITU}}{\mathrm{h}}$	 Capacity of handling equipment. n_{ITU} = number of handled intermodal transport unit; h = hour. 	model
System utilization rate	$arrho=rac{\lambda}{\mu}$	Queueing theory parameter useful to measure correct size of sidings. • ρ = system utilization; • λ = average rate of arrivals; • μ = average rate of served.	Simulation
10		****	7

KPI: selection for marshalling yards

$\Phi_{max} = rac{N_{max}}{T - (t_{pr} + t_{av})}$	Useful to measure the effect of the interruptions on the maximum number of wagons daily treated. • Φ_{max} = maximum flow through the yard • N_{max} = maximum capacity of the hump • T = time interval • t_{pr} = mean interruption time for breakdowns • t_{av} = mean scheduled interruption	ytical Method
$n_{cpi} = \frac{N}{T} t_{mtw}$	 N = mean number of trains daily handled T = time interval t_{mtw} = mean wagon transit time 	Anal
$t_{mtt} = \sum_{i=1}^{12} t_i$	Mean time period from the arrival of a wagon to the marshalling yard from railway network to the exit of the wagon from the marshalling yard to the railway network. • t_{mtt} = mean wagon transit time • t_i = partial time (waiting or operative time)	del
$A_{su} = \frac{L_{tr}}{La_{bin}}$ $D_{su} = \frac{L_{tr}}{Ld_{bin}}$ $P_{su} = \frac{L_{tr}}{L_{tr}}$	Arrival sidings track utilization factor, useful to measure the tracks adequacy to receive new longer trains• L_{tr} = Average train length• La_{bin} = Average arrival sidings track length• Ld_{bin} = Average direction sidings track length	Simulation mo
	$\Phi_{max} = \frac{N_{max}}{T - (t_{pr} + t_{av})}$ $n_{cpi} = \frac{N}{T} t_{mtw}$ $t_{mtt} = \sum_{i=1}^{12} t_i$ $A_{su} = \frac{L_{tr}}{La_{bin}}$ $D_{su} = \frac{L_{tr}}{Ld_{bin}}$ $p_{su} = \frac{L_{tr}}{Lt_{r}}$	$ \Phi_{max} = \frac{N_{max}}{T - (t_{pr} + t_{av})} $ Useful to measure the effect of the interruptions on the maximum number of wagons daily treated. • $\Phi_{max} = \max (m_{max}) + m_{max} = m_{max} (m_{max}) + m$

KPI: selection for port rail terminals

** *

Total Transit Time (ITU) Total Transit Time (vehicle)	$TTR = \sum_{i=1}^{n} TWi + \sum_{i=i}^{n} TOi$	Time period from the arrival of the freight unit (or vehicle) to the terminal gate from road (an external transport infrastructure) to the exit of the unit (or vehicle) from the terminal towards road or railway network. • TTR _v =vehicle total transit time (Ship and train); • TTR _{ITU =} Unit total transit time; • TW = waiting time; • TO = operational time.	Analytical Method
Equipment Performance	$Ep = rac{n_{ITU}}{h}$	 Capacity of handling equipment. n ITU = number of handled intermodal transport unit; h = hour. 	model
System utilization rate	$arrho=rac{\lambda}{\mu}$	Queueing theory parameter, useful to measure correct size of sidings. • ρ = system utilization; • λ = average rate of arrivals; • μ = average rate of served.	Simulation
12		***	

Case studies: Riem

DB DUSS Riem Terminal – Munich (Germany)

5 arrivals tracks in the holding area 3 operative modules 14 loading/unloading tracks 6 trucks lanes 8 storage lanes 6 RMG cranes

24 trains/day

Case studies: IFB Zomerweg

IFB Zomerweg Terminal – Antwerpen (Belgium)

4 tracks

2 cranes + 2 straddle carriers

5 trains/day

Case studies: IFB Zomerweg

NV Combinant Terminal – Antwerpen (Belgium)

- 5 tracks
- **3 RMG cranes**

150,000 units/year

11 trains/day

Case studies: HUPAC HTA

HUPAC HTA Terminal – Antwerpen (Belgium)

4 tracks 3 RMG cranes

235 trucks/day 4 trains/day

Case studies: linear terminal

DB DUSS Duisburg Terminal (Germany)

- 5 arrivals tracks in the holding area
- 1 operative module
- 8 operative tracks (680 m) electrified up to the cranes
- **1 external track dedicated to specific traffic**
- 2 trucks lanes (1 operative for 27 trucks + 1 for crossing through)
- 2 short term storage lanes (680 m, 2 levels, 424 TEU)
- 2 long term storage areas (1 with 9 lanes for dangerous goods)
- **3 RMG cranes with intermodal spreader (2 over 6 tracks + 1 over 8 tracks)**
- 1 trucks check-in area with 2 gates + 18 parking places
- 24 h 6/7 days operational time

<u>9 trains/day</u> 252 units/day 280 trucks/day

Case studies: Hallsberg

Hallsberg marshalling yard (Sweden)

Arrival sidings: 8 tracks (590÷690 m) Double Hump Direction sidings: 32 tracks (374÷760 m) Departure sidings: 12 tracks (562÷886 m) Capacity: 1370 wagons/day

836 wagons/day

19

recritical specifications	
Shunted volume (2002)	305 000 wagons/vear
The capacity of the marshalling yard	
per vear	500 000 wagons/year
Available shunting capacity over the	
hump (theoretical maximum value)	2 900 wagonmeters/hour
Humping Speed	Max. 1.2 meter/second
Wagongroup length	9-125 meters
Number of axles per group of wagons	Max. 20 axles
Axle Load	4.5 - 22.5 tonnes
Wheel Load	2 - 12.25 tonnes/meter
Highest allowed weight per meter	
(Stvm)	6.4 tonnes/meter
Max weight over hump	450 tonnes
Total Lenth of the Yard (arrival,	
direction and departure tracks	3.5 kilometers
	Average 6 meters/km. 21
Slope- Gradient ration of the yard	meters in total, i.e. 6 ‰
Meters of track (total)	60 km
Number of point switches	170
Number of piston brakes	24 123
Number of beam rail brakes, double	
sides. (located at the entrance to the	
direction sidings)	32
Number of beam rail brakes, one side.	
(direction beam rail brakes).	32
Number of buffer stops	32

Case studies: Valencia Principe Felipe

Valencia Principe Felipe port rail terminal (Spain)

Total area: 50,000 m2 4 loading/unloading tracks Extra track to shunt locomotives Electrified tracks until approaching loading/unloading area Two road access Two storage areas (9,000 + 20,000 m²)

Innovations: Rail-Road

21

Examples for inland interchanges

Innovations: Rail-Rail

Examples for marshalling yards

	Common standard	Incremental change (2030)	System change (2050)	
Brakes	 manual controlled track brakes and retarders automatic controlled track brakes and retarders 	 automatic retarders [1] automatic brakes on wagons 	- automatic brakes on wagons	
Rolling Stock Equ	ipment 2		•	
	Common standard	Incremental change (2030)	System change (2050)	
Internal vehicle movement	 diesel shunting locomotives with driver 	- diesel shunting locomotives with driver - driverless locomotives [2]	- driverless locomotive [2]	
Input Parameters	s Influenced	L	1	
Mean number of trai	ins daily treated			
Mean time to receive	e orders from the marshalling yar	d control office [min]		
Mean time between	throwing [min]			
Mean time lost in the	e direction sidings [min]			
Mean needed time f	or acceleration from throwing sp	eed to mean speed in the point s	witches area [s]	
Mean interruption ti	me for breakdowns [min]			
Mean speed for grou	ip of wagons throwing [m/s]			
Mean speed along th	e generic direction sidings track	[m/s]		
Mean speed in the p	oint switches area [m/s]			
Number and type of	hump retarders			
Number of operators	s per function			
Annual cost of brake m	aintenance			
Mean shunting locor	notive speed [m/s]			

Examples for port rail terminals

Tor	lav's common standard	incremental change and syst	em change
Handling Typology	l	, merementar enange and eyer	on onango.
	Common standard	Incremental change (2030)	System change (2050)
	- indirect and direct	- mainly direct	- faster and fully direct
Handling Equipme	nt 1		
	Common standard	Incremental change (2030)	System change (2050)
H.E. in operative track	- transtainer and reach stacker or forklift - few systems for horizontal transfer	- fast transtainer - more systems for horizontal transfer [1], [2], [3], [4]	- automated fast transtainer with moving train [4] - automated systems for horizontal and parallel handling [1], [2], [3], [4]
Input Parameters	Influenced		•
Mean time of unit pick	up by transfer devices [n	nin]	
Mean time of unit dro	p off by transfer devices [min]	
Mean longitudinal trar	nsfer speed of transfer eq	uipment [m/min]	
Mean transversal tran	sfer of transfer equipmen	t [m/min]	
Number of transfer eq	uipment		
Number of operators (on the tracks		
Number of operative r	ail lanes		

Innovations: combination into scenarios

Scenario Terminal Typology	Today	Consolidated Scenario CS	Scenario 1 S1	Scenario 2 S2
Rail – Road Munich Riem	Х	Х	Х	Х
Rail – Road Antwerpen Combinant	Х	Х		
Rail - Road Antwerpen HUPAC	х	Х		
Rail – Road Antwerpen Zomerweg	х	Х		
Rail – Road Typical linear		Х		
Rail - Road Duisburg	х	Х		
Rail - Rail Hallsberg marshalling yard	Х	Х	Х	Х
Rail - Sea Valencia Principe Felipe	х	х	Х	х

- Mean number of containers: 65 (10.36 m per ITU)
- Long Train: 670 m
- H24 working time
- Direct access of train in operative area
- Automatic coupling/uncoupling loco
- Multi lift spreader handling
- ITU and vehicles automatic control and data exchange

Innovations: CS for Hallsberg

- Tracks operative length till 1500 m
- MMM (Multi Modal Marshalling) Yard: classification tracks accessible not only via hump
- Automatic wagon identification
- Automatic coupling and uncoupling
- Automatic brakes on wagons
- Self-propelled wagons
- Duo propulsion and driverless locomotives
- Working time 24 hours

Innovations: CS for Valencia

- Long Train: 850 m / 1000 m
- H24 working time
- Automatic coupling and uncoupling loco
- Number of containers: 80/100 (10.36 m per ITU)
- Multi lift spreader handling
- ITU and vehicles automatic control and data exchange

Effects of innovations: evaluation

Requirement: capability to reproduce terminals' operation

<u>Analytical methods</u> based on combined algorithms (e.g. queuing theory) <u>Simulation models</u> based on event-based processes reproduction

<u>Calibration on typical terminals</u> Subset of data describing the typical operation Cross analysis of typical/calculated /simulated KPI

Tests for validation on case studies More extended set of data describing the present operation Cross analysis of real world/calculated /simulated KPI

Extended application to selected scenarios for case studies

Effects of innovations: analytical methods

Effects of innovations: simulation models

Original development by Planimate[®] freeware Customisation by terminal typology KPI calculation Examples of hierarchical layers

Effects of innovations: Riem

Vehicles total transit time

1

2

Positive and negative effects

- *Green = Positive effect*
- Red = Negative effect

		Riem	Combinant	HUPAC	Zomerweg	Riem	Riem
КРІ							
Total Transit Time (ITU)	TRUCK_TRAIN						
	TRAIN_TRUCK						
Total Transit Time	TRAIN						
(vehicle)	TRUCK						
Equipment Performance	CRANE						
System utilization rate	TRAIN						
System utilization rate	TRUCK						

Consolidated

Effects of innovation: Hallsberg

Tracks utilization rate Relevant increase (48% in CS with long trains)

Scenario 1

Consolidated scenario

50

Ω

State of art

Scenario 2

33

Consolidated scenario (Long Train)

Average number of wagons in the yard Relevant reduction (50% in CS)

Positive and negative effects

 Green = Positive effect Red = Negative effect 			SCENARIO		
	КРІ	Consolidated	Consolidated (Long Train)	1	2
Average wagon transit time					
	Arrival Group				
Tracks utilization rate	Direction Group				
	Departure Group				
Maximum flow through the yard					
Average number of wagons in t	ne yard				

Effects of innovation: Valencia

Vehicles total transit time

Equipment performance Huge increase: 230% for RTG crane

Positive and negative effects

 Green = Positive effect Red = Negative effect 	SCENARIO			
КРІ		Consolidated	1	2
Total Transit Time (ITU)	TRAIN-SHIP SHIP-TRAIN			
Total Transit Time (vehicle)	SHIP TRAIN			
Equipment Performance	PORTAINER REACH STACKER	-	-	-
	RTG HORIZONTAL HANDLING	-	-	-
System utilization rate	TRAIN			

36

Increase factors and increase rate per year

		Increase fact	li I	ncrease % per yea	r	
	2015 2030	2030 2050	2015 2050	2015 2030	2030 2050	2015 2050
Business as Usual	1.16	1.17	1.37	1.0%	0.8%	0.95
Modal shift Low scenario	1.34	1.38	1.87	2.0%	1.6%	1.8%
Modal shift High scenario	1.65	1.84	3.06	3.4%	3.1%	3.2%

37

Feasibility: capital costs

Capital costs analytical calculation (e.g. Riem - inland

T L C C C C C C C C C C C C C C C C C C	Terminal Investment Land acquisition (m2) Connection Track 200 m (5 tracks) - Track foundation Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling tracks - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	Unit m2 m m m m m m	280 338 1 000 1 000 45 9 800 9 800 9 800 8 000 8 000	25 317 634 169 035 317 634 317 634 317	Cost Thousands € 7 108 317 634 7 607 3 106 6 212 2 536	5hare % 6,9% 0,3% 0,6% 7,3% 3,0% 6,0%
7 L C P H H S S S C C C C	Terminal Investment Land acquisition (m2) Connection Track 200 m (5 tracks) - Track foundation Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	Unit m2 m m m m m m	Number € 280 338 1 000 1 000 45 9 800 9 800 9 800 8 000 8 000 8 000	25 317 634 169 035 317 634 317	Thousands € 7 108 317 634 7 607 3 106 6 212 2 536	6,9% 0,3% 0,6% 7,3% 3,0% 6,0%
7 L C P H H S S S B C C C	Terminal Investment Land acquisition (m2) Connection Track 200 m (5 tracks) - Track foundation Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Suffer stop Catenary to the handling tracks (200m)	m2 m m m m m m	280 338 1 000 1 000 45 9 800 9 800 8 000 8 000	25 317 634 169 035 317 634 317	7 108 317 634 7 607 3 106 6 212 2 536	6,9% 0,3% 0,6% 7,3% 3,0% 6,0%
L C P H H S S S B C C C	Land acquisition (m2) Connection Track 200 m (5 tracks) - Track foundation Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Suffer stop Catenary to the handling tracks (200m)	m2 m m m m m m	280 338 1 000 1 000 45 9 800 9 800 8 000 8 000	25 317 634 169 035 317 634 317	7 108 317 634 7 607 3 106 6 212 2 536	6,9% 0,3% 0,6% 7,3% 3,0% 6,0%
C C P H S S B B C C C	Connection Track 200 m (5 tracks) - Track foundation Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m m m m m	1 000 1 000 45 9 800 9 800 8 000 8 000	317 634 169 035 317 634 317	317 634 7 607 3 106 6 212 2 536	0,3% 0,6% 7,3% 3,0% 6,0%
C P H S S B C C C	Connection Track 200 m (5 tracks) - Track structure Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m m m m M	1 000 45 9 800 9 800 8 000 8 000	634 169 035 317 634 317	634 7 607 3 106 6 212 2 536	0,6% 7,3% 3,0% 6,0%
P H S S B C C C	Points (switches) (excluding heaters) Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m m m m	45 9 800 9 800 8 000 8 000	169 035 317 634 317	7 607 3 106 6 212 2 536	7,3% 3,0% 6,0%
F F S B C C	Handling tracks - Track foundation Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Suffer stop Catenary to the handling tracks (200m)	m m m No	9 800 9 800 8 000 8 000	317 634 317	3 106 6 212 2 536	3,0% 6,0%
⊢ S B C C	Handling track - Track structure Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m m Ma	9 800 8 000 8 000	634 317	6 212 2 536	6,0%
s s B C C	Shunting tracks - Track foundation Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m m	8 000	317	2 5 2 6	-
S B C C	Shunting tracks - Track structure Buffer stop Catenary to the handling tracks (200m)	m	8 000		2 3 3 0	2,4%
В С С	Buffer stop Catenary to the handling tracks (200m)	No	8 000	634	5 071	4,9%
c	Catenary to the handling tracks (200m)	INO.	5	4 2 2 6	21	0,0%
c	,	m	600	1 056	634	0,6%
	Catenary to other tracks	m	8 000	1 056	8 452	8,2%
R	Road link to the main network	m	2 800	53	148	0,1%
F	ences, gates, barriers	m	2 880	37	106	0,1%
s	Security equipment (cameras / alarms)	m	2 880	53	152	0,1%
F	Handling and space requirements - dim. 110-tonne axle load	m2	138 171	116	16 057	15,5%
А	Administrative building & maintenance depot (m2)	m2	800	528	423	0,4%
F	-uel tanks	No.	2	4 2 2 6	8	0,0%
L	lighting	m / track-m	301	1 056	318	0,3%
C	Drainage	m	9 800	106	1 035	1,0%
N	Noise barrier	No.	3	2 112 939	6 339	6,1%
С	Crane runway	No.	3	4 014 584	12 044	11,6%
R	Rainwater retention	No.	1	1 584 704	1 585	1,5%
F	Forch water	No.	1	316 941	317	0,3%
S	Spill through	No.	1	105 647	106	0,1%
L	and examination	m2	0	-	-	0,0%
רו	T system	No.	3	306 376	919	0,9%
s	Sum		700	-	81 254	78,5%
7	Technical eqiupment					
N	New reachstacker	No.	1	475 411	475	0,5%
Ľ	Jsed reach stackers	No.	1	158 470	158	0,2%
R	RMG cranes	No.	6	3 486 350	20 918	20,2%
L	Locomotive	No.	1	739 529	740	0,7%
s	Sum				22 292	21,5%
т	Fotal Investment Costs				103 545	100,0%

Operational costs analytical calculation (e.g. Riem - inland interchange)

DUSS Munich-Reim terminal	Share	Cost €	
Annual terminal operational cost components/items	%	Thousands	Source
Annual transhipment equipment running/hire (excluding procurement) cost	5,8%	487	DB
Annual transhipment equipment maintenance cost including procurement	12,6%	1 053	DB
of spare parts but excluding major procurement /investment			
Annual Personnel cost (split into salaries + social/health/pension insurance)	43,1%	3 585	DB
Annual insurance cost (equipment + operation)	1,7%	142	DB
Annual energy cost	4,1%	338	DB
Annual Terminal hire/rent/mortgage/bank interest cost	3,9%	323	DB
Annual infrastructure maintenance cost	9,8%	813	DB
Other terminal costs (fuel tanks, truck depots security and others)	9,6%	802	DB
Rent	4,2%	350	DB
Annual cost for shunting engine	5,2%	433	KTH model
Cost in thousand Euros - Total (Average for the period 2011-2014, Excluding VAT)	100%	8 326	

Feasibility: total costs

Total costs calculation (e.g. Riem - inland interchange)

Total costs			
		Cost	Cost
		€/year	€/TEU
Capacity for calculation TEU/year	300 000		
Operational cost			
Cost for shunting engine		433 153	1,4
Other operating costs		7 949 000	26,5
Sum		8 382 153	27,9
Capital cost			
Annuity technical equipment		1 395 268	4,7
Annuity basic terminal investment		5 033 966	16,8
Sum		6 429 234	21,4
Total cost		14 811 386	49,4
Total cost excluding basic terminal investment		9 777 420	32,6

40

Feasibility: unit costs

42

Assumptions

BENEFITS

Time saving	[3]	[4]	[5]	[6]
-------------	-----	-----	-----	-----

1.0÷1.7 Euro / t h

External costs reduction due to road to rail modal split [2] 30.8÷40.2 Euro / kt km

[2] CE, INFRAS, Fraunhofer ISI - External Costs of Transport in Europe - Delft, September 2011

[3] Significance, VU University Amsterdam, John Bates services - Values of time and reliability in passenger and freight transport in The Netherlands - 2012

[4] De Jong, G.C. - Value of freight travel-time savings, revised and extended chapter for Handbooks in Transport, Volume 1: Handbook of Transport Modelling (Eds. D.A. Hensher and K.J. Button) - Elsevier, 2008

[5] Halse, A.H. and M. Killi (2012) Verdsetting av tid og pålitelighet for godstransport på jernbane (Values of transport time and reliability for railway freight), TØI report 1189/2012, TØI, Oslo.

FURTHER ASSUMPTIONS	
Technical life of new infrastructure	30 years
% of other costs on average EU28 labour costs [Eurostat, 2014]	24.43
% taxes and VAT on average EU28 cost of electricity [Eurostat, 2014]	25.00
Average EU yearly inflation % rate 1999-2015 [Eurostat, 2015]	1.73

Riem inland terminal

Net Present Value [Billion €]										
	Consolidated Scenario			Consolidated Scenario Scenario 1				9	Scenario 2	2
Rate of	BAU	Low	High	BAU	Low	High	BAU	Low	High	
Return										
2%	139	189	267	348	429	578	418	501	652	
3%	117	158	222	288	354	475	354	422	545	
5%	85	113	156	198	242	324	259	305	387	

Small-scale linear terminal

Net Present Value [Billion €]								
Rate of	BAU	Low	High					
Return								
2%	86	93	102					
3%	74	80	86					
5%	56	59	62					

- 44

Feasibility: Rail-Rail and Rail-Sea NPV

Hallsberg marshalling yard

Net Present Value [Billion €]									
	Consolidated Scenario Scenario 1					Scenario 2			
Rate of Return	BAU	Low	High	BAU	Low	High	BAU	Low	High
2%	-133	-117	-104	-204	-203	-202	-176	-174	-173
3%	-115	-102	-91	-179	-178	-177	-155	-154	-152
5 %	-88	-79	-71	-141	-140	-140	-123	-122	-121

Valencia Principe Felipe port rail terminal

	Net Present Value [Billion €]									
	Cons	Consolidated Scenario			Scenario 1			Scenario 2		
Rate of	BAU	Low	High	BAU	Low	High	BAU	Low	High	
Return										
2%	360	410	501	464	527	642	467	529	644	
3%	305	346	420	394	445	538	396	447	540	
5 %	224	251	301	288	322	384	290	326	387	

- 45

Objectives

- a) Definition of terminals typologies capable to cover large majority of rail freight traffic
- b) Identification of a set of KPI by terminal typology capable to represent operational modes of terminals and to be sensitive to effects of innovations
- c) Focused and enlarged case studies to comply with all typologies
- d) Identification of innovations suitable to be included in consolidated scenarios for each terminal typology and case study
- e) Identification of innovations suitable to increase global efficiency of logistic chains
- f) Assessment of future terminal performances including effects of innovative technologies and operational measures
- g) Calculation of operational and capital costs of newly designed terminals
- h) Consolidation of a suitable methodology for future traffic estimation

Quantitative results

- 1) Achievable operational standards of intermodal and wagonload terminals;
- 2) Financial business case of future terminals
- 3) Economic results from societal viewpoint useful to select future European actions in freight transport and rail systems fields

Discussion: feedback from 10/09/15

Suggestions from the audience

- Self-propelled wagons to be included in all scenarios for marshalling yards
- Duo-locomotive already used today not to be considered in 2030-2050 scenarios
- Smaller shunting stations to be proposed and simulated
- Digitalization of information to be included in all scenarios to overcome barriers against transparency in information exchanges
- Vision papers on future framework of logistics (EC projects, logistic operators associations, etc.) to be considered for scenarios

- Added value of logistic services to be taken into account in business cases
- Future terminals able to manage effectively traffic of parcels and carriers services

Discussion: suggested items for today

Terminals for 2030-2050

• ambitious and visionary, anyway feasible?

Declared scope "modern, automated, intelligent and fully-integrated system for efficient, reliable freight Operations"

• addressed?

Different approaches

• KPI? Scenarios? Methods and models? Case studies? Integration with logistic chains? Economic and financial analysis? Others?

Suggestions for next steps

- Compilation of a catalogue of solutions in SP2 (WP2.4) by 09/2017
- Shift2Rail projects: CFM and OC 2016 (ongoing), CFM and OC 2017 (start: 09-10/2017)

