

Rail-Road, Rail-Sea, Marshalling Yards: Enhancement of Interfaces FFE (Madrid, Spain) – 21 September 2017

Stefano RICCI WP2.3 Leader

Team

TRAFIKVERKET

Contributions of terminals to future rail freight systems 2030 and 2050

- Features and role of typical terminals and yards = <u>What the terminals</u> <u>should do</u>
- Key Performance Indicators (KPI) = <u>How the terminals performances can</u> <u>be measured</u>
- 3. Case studies = <u>How the terminals are working today</u>
- 4. Innovations = What the terminals can take onboard and integrate
- 5. Effects of innovations = <u>How the terminals could work</u>
- 6. Economical and financial feasibility = <u>To what extent the terminals will</u> <u>be economically and financially sustainable</u>

Features and role: standards

Equipment	Common standard 2010	Incremental change 2030 *	System change 2050 *	
Infrastructure		·	1	
Rail Freight Corridors	18.000km	25.000km	50.000km	
Signalling systems	Different	ERTMS L2 in RFC	ERTMS L3 in RFC	
Standard rail weight	UIC 60 kg/m	70 kg/m	70 kg/m	
Speed ordinary freight	100 km/h	100 - 120 km/h	120 km/h	
Speed fast freight	100 km/h	120 - 160 km/h	120 -160 km/h	
Traffic system				
SWL	Marshalling - feeder	Marshalling – feeder	Automatic marshalling	
		Some liner trains	Liner trains – duo - loco	
Train load		Remote controlled	All remote controlled	
Inter Modal	Endpoint -trains	Endpoint -trains	Endpoint -trains	
		Liner trains with stops	Liner trains fully	
		at siding	automated loading	
High Speed Freight	National post trains	International post and	International post and	
		parcel -trains	parcel -train network	
IT /monitoring systems	·	·		
	Some different	Standardized control	Full control of all trains	
		system	and consignments	
Wagons				
Running gears	Different	50% Track-friendly	All track friendly	
Brakes	Casted-brakes	LL-brakes	Disc-brakes	
Brake control	Pneumatic	Radio controlled EOT	Fully Electronic	
Couples	Screw couples	Automatic couplers on	Automatic couples on	
		some trains	all trains	
Max Speed	100 km/h	120 km/h	120-160 km/h	
Max Axle load	22,5 tonnes	22,5-25 tonnes	22,5-30 tonnes	
Floor height lowest	1100 mm	1000 mm	800 mm	
IT-system	Way-side	Some in wagons	All radio controlled	
Locomotives	1	1	1	
Tractive effort kN	300	350	400	
Axle load	20 tonne	22,5 tonne	25 tonne	
Propulsion	Electric	Some duo-locos	Most duo-locos	
Fuel	Diesel	LNG/Diesel	LNG/electric	
Engineers	Always drivers	Some driverless	All driverless	
Trains	1 •		Ц	
		750 4000	1000 0000	
Train lengths in RFC	550-850 m	750-1000 m	1000-2000 m	

4

Rail-Road: interchange interchange

DB DUSS Riem – Munich (Germany) IFB Zomerweg – Antwerpen (Belgium) NV Combinant – Antwerpen (Belgium) HUPAC HTA – Antwerpen (Belgium) Typical small scale automatic linear terminal DB DUSS Duisburg (Germany)

Rail-Rail: marshalling yard Hallsberg (Sweden)

Rail-Sea: port rail terminal Valencia Principe Felipe (Spain)

Capability to display the present performances

- Meeting requests of operators
- Effectiveness to describe terminal operation performances

Sensibility to potential changes introduced by innovations

- Capability to assess effects of new technologies
- Capability to assess effects of innovative operational measures
- Homogenization with forecasting methods and models

Large scale identification

- Rail-Road: 13; Rail-Rail: 15; Rail-Sea: 14

Fine tuning

- Most effective from operation performances viewpoint
- Most reliable method (algorithms and/or simulation) for KPI calculation
- Rail-Road: 4/13; Rail-Rail: 4/15; Rail-Sea: 4/14

DB DUSS Riem Terminal – Munich (Germany)

5 arrivals tracks in the holding area 3 operative modules 14 loading/unloading tracks 6 trucks lanes 8 storage lanes 6 RMG cranes

24 trains/day

Mean number of containers: 65 (10.36 m per ITU) Long Train: 670 m H24 working time Direct access of train in operative area Automatic coupling/uncoupling loco Multi lift spreader handling ITU and vehicles automatic control and data exchange

Case studies: Hallsberg today

Hallsberg marshalling yard (Sweden)

Arrival sidings: 8 tracks (590÷690 m) Double Hump Direction sidings: 32 tracks (374÷760 m) Departure sidings: 12 tracks (562÷886 m) Capacity: 1370 wagons/day

836 wagons/day

Technical Specifications	
Shunted volume (2002)	305 000 wagons/year
The capacity of the marshalling yard	
per year	500 000 wagons/year
Available shunting capacity over the	
hump (theoretical maximum value)	2 900 wagonmeters/hour
Humping Speed	Max. 1.2 meter/second
Wagongroup length	9-125 meters
Number of axles per group of wagons	Max. 20 axles
Axle Load	4.5 - 22.5 tonnes
Wheel Load	2 - 12.25 tonnes/meter
Highest allowed weight per meter	
(Stvm)	6.4 tonnes/meter
Max weight over hump	450 tonnes
Total Lenth of the Yard (arrival,	
direction and departure tracks	3.5 kilometers
	Average 6 meters/km. 21
Slope- Gradient ration of the yard	meters in total, i.e. 6 ‰
Meters of track (total)	60 km
Number of point switches	170
Number of piston brakes	24 123
Number of beam rail brakes, double	
sides. (located at the entrance to the	
direction sidings)	32
Number of beam rail brakes, one side.	
(direction beam rail brakes).	32
Number of buffer stops	32

Tracks operative length till 1500 m MMM (Multi Modal Marshalling) Yard: classification tracks accessible not only via hump Automatic wagon identification Automatic coupling and uncoupling Automatic brakes on wagons Self-propelled wagons Duo propulsion and driverless locomotives Working time 24 hours

Valencia Principe Felipe port rail terminal (Spain)

Total area: 50,000 m2 4 loading/unloading tracks Extra track to shunt locomotives Electrified tracks until approaching loading/unloading area Two road access Two storage areas (9,000 + 20,000 m²)

Case studies: Valencia Principe Felipe tomorrow

Long Train: 850 m / 1000 m H24 working time Automatic coupling and uncoupling loco Number of containers: 80/100 (10.36 m per ITU) Multi lift spreader handling ITU and vehicles automatic control and data exchange

Requirement: capability to reproduce terminals' operation

<u>Analytical methods</u> based on combined algorithms (e.g. queuing theory) <u>Simulation models</u> based on event-based processes reproduction

<u>Calibration on typical terminals</u> Subset of data describing the typical operation Cross analysis of typical/calculated /simulated KPI

Tests for validation on case studies

More extended set of data describing the present operation Cross analysis of real world/calculated /simulated KPI

Extended application to selected scenarios for case studies

Effects of innovations: analytical methods and simulation models

Examples of hierarchical layers

Itch 10 Change 8 t USCITA vuict

RICARIC

Queue 14

Change 10

Switch 3 Change 3

Effects of innovations: Riem

Vehicles total transit time

General reduction for train

Equipment performance

Vehicles utilisation rate

Effects of innovation: Hallsberg

Maximum flow through the yard

Tracks utilization rate <u>Relevant increase (48% in CS with long trains</u>)

Average number of wagons in the yard **Relevant reduction (50% in CS)**

Effects of innovation: Valencia

Vehicles total transit time

Equipment performance Huge increase: 230% for RTG crane

Vehicles utilization rate Relevant decrease for train: 51%

Feasibility: total costs %

Feasibility: unit costs

Feasibility: Net Present Value

<u>Riem</u>

Net Present Value [Billion €]									
	Consolidated Scenario			Scenario 1			Scenario 2		
Rate of	BAU	Low	High	BAU	Low	High	BAU	Low	High
Return									
2%	139	189	267	348	429	578	418	501	652
3%	117	158	222	288	354	475	354	422	545
5%	85	113	156	198	242	324	259	305	387

Hallsberg

Net Present Value [Billion €]									
	Consolidated Scenario			Scenario 1			Scenario 2		
Rate of	BAU	Low	High	BAU	Low	High	BAU	Low	High
Return									
2%	-133	-117	-104	-204	-203	-202	-176	-174	-173
3%	-115	-102	-91	-179	-178	-177	-155	-154	-152
5 %	-88	-79	-71	-141	-140	-140	-123	-122	-121

Valencia

Net Present Value [Billion €]									
	Consolidated Scenario		Scenario 1			Scenario 2			
Rate of Return	BAU	Low	High	BAU	Low	High	BAU	Low	High
2%	360	410	501	464	527	642	467	529	644
3%	305	346	420	394	445	538	396	447	540
5 %	224	251	301	288	322	384	290	326	387

Feasibility: confirmed subjects

Objectives

- a) Definition of terminals typologies capable to cover large majority of rail freight traffic
- b) Identification of KPIs capable to represent operational modes of terminals and to be sensitive to effects of innovations
- c) Focused and enlarged case studies to comply with all typologies
- d) Identification of innovations suitable to be included in consolidated scenarios for each terminal typology and case study
- e) Identification of innovations suitable to increase global efficiency of logistic chains
- f) Assessment of future terminals including effects of innovative technologies and operational measures
- g) Calculation of operational and capital costs of newly designed terminals
- h) Consolidation of a suitable methodology for future traffic estimation

Quantitative results

- 1) Achievable operational standards of intermodal and wagonload terminals;
- 2) Financial business case of future terminals
- 3) Economic results from societal viewpoint useful to select future European actions in freight transport and rail systems fields

Thank you for your kind attention

Stefano RICCI

WP2.3 Leader

Sapienza Università di Roma DICEA stefano.ricci@uniroma1.it

