

SP2 Requirements toward the freight system of 2030-2050

FFE (Madrid Spain) 21 September 2017

Bo-Lennart NELLDAL Project Leader WP2.1

Content

Capacity for Rail

1. Today's market
2. Demand for rail and freight flows in Europe towards 2030/2050
3. Customer requirements for different goods segments
4. Technical development
5. Traffic and operational development
6. Conclusions for an efficient rail freight system 2030/2050

Demand for rail freight 2030/2050

Capacity for Rail

Rail market share development

West

Market share for freight modes in EU 15

East
Market share for freight modes in EU 13

Demand for rail freight 2030/2050

Capacity for Rail

The EU target - what does it mean?

For freight transportation by rail and truck in EU

2010 2,300 billion tonne-km
53% of transports in EU is $>300 \mathrm{~km}$
Market share for rail is 25% on distances >300 km

2050 total 3,500 billion tonne-km Increase of approx. 50\%
Market share for rail increases from 25% to 60% on distances $>300 \mathrm{~km}$

Source: Processing of data from Transtools in TOSCA and at KTH

Future customer requirements
Capacity for Rail

Customer requirements:

Environment - Quality - Cost

Future customer requirements

Capacity for Rail

Longer and heavier trucks

- In some countries:

18m -> 24 m

- In Sweden: 60 ->74ton 25m->34m

To compete rail must be even more effective:

- Longer and heavier trains and wagons
- More competitive inter modal

Technical development

Capacity for Rail
Wagons: Short term: Incremental development Long term: System change

Incremental development:

- Higher axle load 22,5 $\rightarrow 25$ ton
- Higher speed $100 \rightarrow 120$ km/h
- Higher gauge
- End of train device (EOT)
- LL-brakes
- Lighter wagons

System change:

- Higher axle load 22,5 $\rightarrow 25-30$ ton
- Higher speed $100 \rightarrow 120-160 \mathrm{~km} / \mathrm{h}$
- Higher and wider gauge
- Electro pneumatic (EP) brakes
- Disc brakes
- Automatic couplers

Capacity - traction

Use existing locos better

Locos with 6 axles

Locos with higher axle load

Use Duo-locos

-2

Capacity - traction

Capacity for Rail

Locomotives: Do we need higher effort or adhesive weight?

- Modern electric locos are developed for passenger service that means 5-6 MW, 200 km/h and 21 tons axle load
- For freight higher axle load is essential to handle heavier trains - normal 22,5 ton or same as the wagons
- 6-axle locomotives is also an option for higher adhesive weight

Long freight train in EU

- Get as much as possible out of one engine $=1050 \mathrm{~m}$

- An intermodal train weights approx 2 tons/meter
- A modern 4-axle electric loco can haul 2200 gross tons
- 1000 m wagon rake $=1000 \times 2=2000$ tons + marginal $=2200$ tons
- 1000 m wagon rake + loco+ marginal $=1050 \mathrm{~m}$
- Optimal length in Europe $=1050 \mathrm{~m}$
- $2 \times 750 \mathrm{~m}=1500$ is an alternative

Capacity and cost

Longer trains

- Longer trains are often possible with limited investments in infrastructure
- Longer trains means higher capacity and lower transport cost
- $630 \rightarrow 1050$ m capacity $+76 \%$ cost -21% per tonneskm
- With one loco more economic operation
- There is a need of unified braking rules in Europe

Capacity and cost

Capacity for Rail

Higher axle load

- Same gross weight approx. 3,200 tonnes train load
- Axle load 20-22,5-25-30 tonnes
- Axle load 25 tonnes with light weight wagon: less tare \rightarrow more payload
- Higher axle load \rightarrow fewer wagons for same payload \rightarrow shorter train

Capacity for Rail

Use of higher and wider loading gauge

Today's terminals

Inter Modal - terminal handling is crucial

- Terminal costs have a high share of the total transport cost
- Terminals must be built for reach-stackers with big areas with high axle load
- The terminal cannot be electrified - diesel engines are needed to shunt the train
- Tracks has to be built to park the wagons
- Endpoint traffic on long distances - no network

Cost structure intermodal

Paradigm shift in intermodal

Horizontal transfer under catenary

Intermediate terminals

Liner traffic stops at sidings

Shorter feeder transports

Roll-on roll off for trailers

Inter Modal - roll on roll off of trailers

- Most trailers are not equipped to be lifted
- If the trailers could be rolled off and on all trailers could be handled
- Then the terminals has to be dimensioned only for the trailers axle load
- The terminal can be very compact and cheap
- This means lower logistic costs for customers and society

Traffic and operational development

Possibilities to develop Wagon Load

- Handle group of wagons instead of single wagons
- Production in cooperation with trainload
- Booked network and capacity management
- Higher axle load, meter load and wider gauge
- Concentration of marshalling yards and liner feeder trains
- Automatize of marshalling
- Automatic couplers

Traffic and operational development

Linear operation and Duo-locos

- Linear trains can be more effective than hub and spoke systems
- Sometimes the long distance train also can distribute wagons
- With duo-locos it also possible to shunt wagons at un-electrified tracks
- One duo-loco can replace one electric loco and one diesel loco
- In long term it will also be possible to not electrify yards and sidings

Node system (today)

Traffic and operational development

Capacity for Rail

Tracking, tracing and monitoring

- Location through satellites or cellular mobile communication
- RFID and internet in combination for information from trains in real time
- On board or way side monitoring for freight
- Monitoring can also be used for infrastructure health control
- Intelligent rail is technically possible but not at all fully used in the rail system

Demand and rail network 2030/2050

White paper

 forecast 2050In tonne-km Source: D-rail

Rail Freight

Corridors 2015
Established 20132015

White paper forecast 2050
In tonne
Source: D-rail

High Speed
 Network 2025

Existing and planned
Source: UIC

Capacity for rail freight 2030/2050

Capacity for Rail

Capacity can be improved in many ways

- Longer and heavier trains
- Higher axle load and higher speed
- Better signaling system
- HSR will free capacity for freight and regional trains on conventional lines
- Dedicated freight lines is an option when RFC is fully utilized

Costs for rail freight 2030/2050

Capacity for Rail

Measures to reduce cost for rail freight

Efficient freight rail freight 2030/2050

Optimizing wagons, trains and infrastructure

Conclusions to establish a competitive rail system 2030/2050

- Today's trend for freight are not in line with EU target - there is a strong need for further technical development as well as market orientation of rail freight
- The wagons: Incremental development in short term: Better length utilization and EOT. System change in long term: Automatic couplers and EP-brakes
- Wagons, trains and infrastructure: Wider gauge, higher axle load and higher speed. Longer trains with one loco 750-1000 m with two locos $2 \times 750=1500 \mathrm{~m}$
- Locomotives: Higher axle load with track-friendly bogies is a possibility to handle heavier and longer trains
- ERTMS L2 must be completed with shorter block lengths to gain capacity important to develop and implement ERTMS L3 with low cost for freight
- The future network for HSR may free capacity for freight if slots will be reserved on the conventional network - important with high performance on RFC
- Rail can make a real contribution to mobility and to avoid the climate change if EU target will be implemented and rails potential fully utilized

Thank you for your kind attention

Bo-Lennart NELLDAL

Project leader SP2 WP2.1
KTH - Royal Institute of Technology
Stockholm Sweden
bo-lennart.nelldal@abe.kth.se

Appendix

Equipment	Common standard 2010	Incremental change* 2030	System change*
Wagons			
Running gear Brakes Brake control Couplers Max Speed Max Axle load Floor height lowest IT-system	Different Cast brakes Pneumatic Screw couplers 100 km/h 22.5 tonnes $1,200 \mathrm{~mm}$ Way-side	50\% Track-friendly LL brakes Radio controlled EOT Automatic couplers on some trains 120 km/h 25 tonnes 1,000 mm Some in wagons	All track-friendly Disc brakes Fully electronic Automatic couplers on all trains 120-160 km/h 30 tonnes 800 mm All radio controlled
Locomotives			
Tractive effort kN Axle load Propulsion Fuel Drivers	300 20 tonne Electric Diesel Always drivers	350 22,5 tonne Some duo-locos LNG/Diesel Some driverless	400 25 tonne All duo-locos LNG/electric All driverless
Trains			
Train lengths in RFC Train weight	550-850 m 2,200 tonnes	740-1050 m 4,400 tonnes	$\begin{aligned} & \text { 1050-2100 m } \\ & 10,000 \text { tonnes } \end{aligned}$

[^0]Capacity for Rail

Equipment	Common standard 2010	Incremental change* 2030	System change* 2050
Infrastructure			
Rail Freight Corridors Signalling systems Standard rail weight Speed. ordinary freight Speed, fast freight	18,000km Different UIC $60 \mathrm{~kg} / \mathrm{m}$ $100 \mathrm{~km} / \mathrm{h}$ $100 \mathrm{~km} / \mathrm{h}$	25,000km ERTMS L2 in RFC $70 \mathrm{~kg} / \mathrm{m}$ $100-120 \mathrm{~km} / \mathrm{h}$ $120-160 \mathrm{~km} / \mathrm{h}$	50,000km ERTMS L3 in RFC $70 \mathrm{~kg} / \mathrm{m}$ $120 \mathrm{~km} / \mathrm{h}$ $120-160 \mathrm{~km} / \mathrm{h}$
Traffic system			
Wagonload	Marshalling - feeder	Marshalling - feeder Some liner trains	Automatic marshalling Liner trains - duo-loco
Trainload		Remote controlled	All remote controlled
Intermodal	Endpoint-trains	Endpoint-trains Liner trains with stops at siding	Endpoint-trains Liner trains fully automated loading
High Speed Freight	National post trains	International post and parcel trains	International post and parcel train network
IT /monitoring systems			
	Some different	Standardized	Full control of all trains and consignments

*) Adapted to market needs in each product and line

[^0]: ${ }^{*}$) Adapted to market needs in each product and line

