

SP2 Requirements toward the freight system of 2030-2050

FFE (Madrid Spain) 21 September 2017

Bo-Lennart NELLDAL Project Leader WP2.1

ROYAL INSTITUTE OF TECHNOLOGY

Content

- 1. Today's market
- 2. Demand for rail and freight flows in Europe towards 2030/2050
- 3. Customer requirements for different goods segments
- 4. Technical development
- 5. Traffic and operational development
- 6. Conclusions for an efficient rail freight system 2030/2050

Demand for rail freight 2030/2050

The EU target - what does it mean? For freight transportation by rail and truck in EU

2010 2,300 billion tonne-km

53% of transports in EU is >300 km

Market share for rail is 25% on distances >300 km

2050 total 3,500 billion tonne-km

Increase of approx. 50%

Market share for rail increases from 25% to 60% on distances >300km

Source: Processing of data from Transtools in TOSCA and at KTH

Customer requirements:

Future customer requirements

Longer and heavier trucks

- In some countries: 18m -> 24 m
- In Sweden: 60 ->74ton
 25m->34m

Cost for inter modal - direct trucking

To compete rail must be even more effective:

- Longer and heavier trains and wagons
- More competitive inter modal

Technical development

Wagons: Short term: Incremental development Long term: System change

Incremental development:

- Higher axle load 22,5 \rightarrow 25 ton
- Higher speed 100 \rightarrow 120 km/h
- Higher gauge
- End of train device (EOT)
- LL-brakes
- Lighter wagons

System change:

- Higher axle load 22,5 \rightarrow 25-30 ton
- Higher speed 100 \rightarrow 120-160 km/h
- Higher and wider gauge
- Electro pneumatic (EP) brakes
- Disc brakes
- Automatic couplers

Capacity - traction

Use existing locos better

Locos with 6 axles

Locos with higher axle load

Use Duo-locos

Locomotives: Do we need higher effort or adhesive weight?

- Modern electric locos are developed for passenger service that means 5-6 MW, 200 km/h and 21 tons axle load
- For freight higher axle load is essential to handle heavier trains normal 22,5 ton or same as the wagons
- 6-axle locomotives is also an option for higher adhesive weight

Longer freight trains

- An intermodal train weights approx 2 tons/meter
- A modern 4-axle electric loco can haul 2 200 gross tons
- 1000 m wagon rake = 1000x2= 2 000 tons + marginal = 2 200 tons
- 1000 m wagon rake + loco+ marginal = 1050 m
- Optimal length in Europe = 1050 m
- 2 x 750 m = 1500 is an alternative

Capacity and cost

Longer trains

- Longer trains are often possible with limited investments in infrastructure
- Longer trains means higher capacity and lower transport cost
- 630 \rightarrow 1050 m capacity +76% cost 21% per tonneskm
- With one loco more economic operation
- There is a need of unified braking rules in Europe

Capacity and cost

Higher axle load

- Same gross weight approx. 3,200 tonnes train load
- Axle load 20 22,5 25 30 tonnes
- Axle load 25 tonnes with light weight wagon: less tare \rightarrow more payload
- Higher axle load \rightarrow fewer wagons for same payload \rightarrow shorter train

Loading gauge

Today's terminals

Inter Modal – terminal handling is crucial

- Terminal costs have a high share of the total transport cost
- Terminals must be built for reach-stackers with big areas with high axle load
- The terminal cannot be electrified diesel engines are needed to shunt the train
- Tracks has to be built to park the wagons
- Endpoint traffic on long distances no network

Paradigm shift in intermodal

Roll-on roll off for trailers

Inter Modal – roll on roll off of trailers

- Most trailers are not equipped to be lifted
- If the trailers could be rolled off and on all trailers could be handled
- Then the terminals has to be dimensioned only for the trailers axle load
- The terminal can be very compact and cheap
- This means lower logistic costs for customers and society

Traffic and operational development

Possibilities to develop Wagon Load

- Handle group of wagons instead of single wagons
- Production in cooperation with trainload
- Booked network and capacity management
- Higher axle load, meter load and wider gauge
- Concentration of marshalling yards and liner feeder trains
- Automatize of marshalling
- Automatic couplers

Traffic and operational development

Linear operation and Duo-locos

- Linear trains can be more effective than hub and spoke systems
- Sometimes the long distance train also can distribute wagons
- With duo-locos it also possible to shunt wagons at un-electrified tracks
- One duo-loco can replace one electric loco and one diesel loco
- In long term it will also be possible to not electrify yards and sidings

Traffic and operational development

Tracking, tracing and monitoring

- Location through satellites or cellular mobile communication
- RFID and internet in combination for information from trains in real time
- On board or way side monitoring for freight
- Monitoring can also be used for infrastructure health control
- Intelligent rail is technically possible but not at all fully used in the rail system

Demand and rail network 2030/2050

Capacity for rail freight 2030/2050

Capacity can be improved in many ways

- Longer and heavier trains
- Higher axle load and higher speed
- Better signaling system
- HSR will free capacity for freight and regional trains on conventional lines
- Dedicated freight lines is an option when RFC is fully utilized

Measures for improving freight rail capacity

Costs for rail freight 2030/2050

Conclusions to establish a competitive rail system 2030/2050

- Today's trend for freight are not in line with EU target there is a strong need for further technical development as well as market orientation of rail freight
- The wagons: Incremental development in short term: Better length utilization and EOT. System change in long term: Automatic couplers and EP-brakes
- Wagons, trains and infrastructure: Wider gauge, higher axle load and higher speed. Longer trains with one loco 750-1000 m with two locos 2x750=1500m
- Locomotives: Higher axle load with track-friendly bogies is a possibility to handle heavier and longer trains
- ERTMS L2 must be completed with shorter block lengths to gain capacity important to develop and implement ERTMS L3 with low cost for freight
- The future network for HSR may free capacity for freight if slots will be reserved on the conventional network – important with high performance on RFC
- Rail can make a real contribution to mobility and to avoid the climate change if EU target will be implemented and rails potential fully utilized

Thank you for your kind attention

Bo-Lennart NELLDAL

Project leader SP2 WP2.1

KTH – Royal Institute of Technology Stockholm Sweden

bo-lennart.nelldal@abe.kth.se

Appendix

Equipment	Common standard	Incremental change*	System change*
	2010	2030	
Wagons			
Running gear	Different	50% Track-friendly	All track-friendly
Brakes	Cast brakes	LL brakes	Disc brakes
Brake control	Pneumatic	Radio controlled EOT	Fully electronic
Couplers	Screw couplers	Automatic couplers on	Automatic couplers on
Max Sneed		some trains	all trains
Max Axle load	100 km/h	120 km/h	120-160 km/h
Floor height lowest	22.5 tonnes	25 tonnes	30 tonnes
IT-system	1,200 mm	1,000 mm	800 mm
	Way-side	Some in wagons	All radio controlled
Locomotives			
Tractive effort kN	300	350	400
Axle load	20 tonne	22,5 tonne	25 tonne
Propulsion	Electric	Some duo-locos	All duo-locos
Fuel	Diesel	LNG/Diesel	LNG/electric
Drivers	Always drivers	Some driverless	All driverless
Trains			•
Train lengths in RFC	550-850 m	740-1050 m	1050-2100 m
Train weight	2,200 tonnes	4,400 tonnes	10,000 tonnes
Train weight *) Adapted to market	2,200 tonnes needs in each product and	4,400 tonnes	10,000 tonn

Appendix

Equipment	Common standard	Incremental change*	System change*
	2010	2030	2050
Infrastructure			
Rail Freight Corridors	18,000km	25,000km	50,000km
Signalling systems	Different	ERTMS L2 in RFC	ERTMS L3 in RFC
Standard rail weight	UIC 60 kg/m	70 kg/m	70 kg/m
Speed. ordinary freight	100 km/h	100-120 km/h	120 km/h
Speed, fast freight	100 km/h	120-160 km/h	120-160 km/h
Traffic system			
Wagonload	Marshalling - feeder	Marshalling – feeder	Automatic marshallin
		Some liner trains	Liner trains – duo-loc
Trainload		Remote controlled	All remote controlled
Intermodal	Endpoint-trains	Endpoint-trains	Endpoint-trains
		Liner trains with stops	Liner trains fully
		at siding	automated loading
High Speed Freight	National post trains	International post and	International post an
		parcel trains	parcel train network
IT /monitoring systems			•
	Some different	Standardized	Full control of all trai

